Spline representation and redundancies of one-dimensional ReLU neural network models
نویسندگان
چکیده
We analyze the structure of a one-dimensional deep ReLU neural network (ReLU DNN) in comparison to model continuous piecewise linear (CPL) spline functions with arbitrary knots. In particular, we give recursive algorithm transfer parameter set determining DNN into CPL function. Using this representation, show that after removing well-known redundancies DNN, which are caused by positive scaling property, all remaining parameters independent. Moreover, one, two or three hidden layers can represent K arbitrarily prescribed knots (breakpoints), where is number real normalized (up output layer parameters). Our findings useful fix priori conditions on achieve an breakpoints and function values.
منابع مشابه
Volatility Calibration Using Spline and High Dimensional Model Representation Models
The local volatility function is approximated using two different models: a bicubic spline and High Dimensional Model Representation (HDMR) model. For a bicubic spline the local volatility values σi at a chosen discrete set of knots are determined by minimizing the least square error between market and model option prices. Model option prices are found using the one-factor diffusion process for...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Applications
سال: 2022
ISSN: ['1793-6861', '0219-5305']
DOI: https://doi.org/10.1142/s0219530522400103